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We discuss a moving finite element method for solving vector systems of

jis time dependent partial differential equations in one space dimension. The mesh

is moved so as to equidistribute the spatial component of the discretization

error in H1. We present a method of estimating this error by using

Op-hierarchic finite elements. The error estimate is also used in an adaptive

mesh refinement procedure to give an algorithm that combines mesh movement and

refinement.

We discretize the partial differential equations in space using a

Galerkin procedure with piecewise linear elements to approximate the solution

and quadratic elements to estimate the error. A system of ordinary

differential equations for mesh velocities are used to control element

motions. We use existing software for stiff ordinary differential equations

* -for the temporal integration of the solution, the error estimate, and the mesh

C')motion. Computational results using a code based on our method are presented

J for several examples.
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1. Introduction Chief, Tsoh ioal InoruatiomDi~ilou '

Many technological situations involve the rapid formation, evolution,

propagation, and disintegration of small scale structures. Some examples are

shock waves, shear layers in laminar and turbulent flows, phase boundaries

during nonequilibrium thermal processes, and classical boundary layers. With

increasing complexity of the physical problem, there is an increasing need for

reliable and robust software tools to accurately and efficiently describe the

phenomena. Adaptive techniques automatically change and evolve with the

solution and are thus good candidates for providing the computational methods

and codes necessary to solve some of these difficult problems.

Two types of adaptive techniques are currently popular: i) moving mesh

methods, where a grid of a fixed number of finite difference cells or finite

elements is moved so as to follow and resolve local nonuniformities in the

solution, and (ii) local refinement methods, where uniform fine grids are

added to coarser grids in regions where the solution is not adequately

resolved. A representative sample of both types of methods is contained in

Babuska, Chandra, and Flaherty [i. Roughly speaking, moving mesh methods are

superior at reducing dispersive errors in the vicinity of wave fronts while

local refinement methods can, in principle, add enough fine grids to resolve

any fine scale structure (cf. Hedstrom and Rodrigue (9]).

We discuss a moving mesh finite element procedure for finding numerical

solutions of m-dimensional vector systems of partial differential equations

having the form

(101) Lu := M(x,t)ut + f(xt,uux) (D(x,t,u)uxlx 0,

0 < x < 1, t > 0

subject to the initial and boundary conditions

', . .'.."-.-" ".,.. ..--, ..."-'v -: -'-'-. , '' - ,--" " -" " ," "", " "".""" -" ". -" ". """" -"""." ."""- " -" " "" . .-.-"".". ..-.""....... ..." : "., " ,_" "" , " _"" ._" ".- "" -_. ..._ "" " _ ' '
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(1.2) u(x,O) -u 0(x) , 0 x < 1

m
(1.2bc) either ui(x,t) -aj(t) or I Dijuj (x,t) -aj(t)

at x - 0 and 1 , t > 0 , i - 1, 2, 000, M.

We are primarily concerned with parabolic problems where D and M are positive

definite; however, we do not restrict ourselves to this case, but instead we

assume that conditions are specified so that equations (1.1,2) have an

isolated solution.

We discretize (1.1,2) in space using a finite element-Galerkin

procedure with piecewise linear approximations on a moving mesh. We simulta-

* neously calculate an error estimation using a piecewise quadratic correction.

This error estimate is used to move the mesh so that it approximately

* equidistributes the local spatial component of the discretization error.

*Temporal integration is performed using a code for stiff ordinary differential

equations and algebraic systems due to Petzold [151. We halt the temporal

* integration at specified times and examine our error estimate. If it is

* larger than a prescribed tolerance, the step is rejected and the integration

is re-done using a finer spatial discretization. On the other hand, if the

* error estimate indicates that the solution is being calculated too

accuarately, then the integration is continued with a coarser spatial mesh.

Our procedure differs from the moving finite element method of Miller et*

* al. [8,12,131 in that we move the mesh so that the spatial error in H1l is

equidistributed and they move their mesh so as to minimize the residual in

L2 - Our refinement procedure also differs from local refinement procedures

of, e.g., Berger [21, Bieterman and Babuska [3,41, and Flaherty and Moore

[6]. Our mesh equidistributes the local error and, thus, when refinement is

necessary it is performed globally. This avoids the use of complicated tree

'..*-*.... ... ... ...

at.* x -. 0* and .. , t. >0, .. ,2,... .. .. . . . .
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data structures that are necessary with the local refinement schemes of, e.g.,

Berger [21 and Flaherty and Moore [6,71.

In Section 2 of this paper we discuss our discretization procedure, in

Section 3 we describe our algorithm and mesh refinement techniques, in Section

4 we apply a code based on our algorithm to several linear and nonlinear

examples, and in Section 5 we discuss our results and suggest some future

considerations and refinements.

2. Discrete Formulation

We construct a weak form of (1.1,2) in the usual manner. Thus, we assume

u C H1 , where the subscript Z denotes that u satisfies any essential
E

(Dirichlet) boundary conditions in (1.2). We select a test function v C H1,
0

where the subscript 0 indicates that v satisfies homogeneous versions of any

essential boundary conditions. We multiply (1.1) by v, integrate it on

0 4 x 4 1, and then integrate the diffusive terms by parts to obtain
I Accosion F)r

(2.1a) (v,ut) + (v,f) + a(v,u) = 0 , for all v C H1  t 0 NTTS CRA&I
0, > 0 P TAB

where iontiO"

(2.1b) (v,u) = J v(x,t)Tu(xt)dx , "-on/
0 1 ' ,b111ty C', es ".

I I : cl/O

(2.1c) a(v,u) - f vT D(xtu)uxdx - vTD(xtu)ux 1. ,7.,o

... -:0

To construct finite element solutions of (2.1) we select finite

dimensional approximations U C SN and V C SN to u and v, respectively. ""iE 0 "

Here, SN and SN are finite dimensional subspaces of HI and H1
E 0 E 0

respectively. Thus, we seek to find U C:SN satisfying
E -
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(2.2a) (V,Ut) + (V,f) + a(V,U) -0 ,for all V CSN ,t > 0,
0

(2.2b) (vU) -(V'uO) ,t 0

We introduce a partition

(2.3 11tN) (0 O~t < x(t)< .. < N~t

of (0,I) into N subintervals (xj....(t),xj(t)), i1 1, 2, .. ,N ,t )o 0 and

select U and V to be piecewise linear polynomials with respect to this

partition. Thus, for example, U has the form

N
(2.4a) U(x,t) - Uj~t)Oj(x,II(t,N))

i =0

where

(2.4b) #i(x,II(t,N)) - xi+1(t) X xi() X-Cx+ t
xi+1(t) - xj(t) xit z(t

0 ,otherwise

We note that the derivative Ut in (2.2a) has the form

N *i+I

(2.5) Ut U ) {U(t)o i(xulT(t,N)) + u,(t) ±.xt~j

in -0 -i-1 dxj

where C) :-d( )/dt. Thus, if the mesh positions and velocities, xj(t) and

;i(t) were kn-own, we would have a set of ordinary differential equations for

the nodal values Ui(t) of U(x,t).
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In order to estimate the error in the piecewise linear finite element

equations (2.2) to (2.5) we write

(2.6) u.(x,t) U(x,t) + e(x,t)

5 and substitue this into (2.1a) to obtain

(2.7) (v,Ut+ et) +(v,f(.,tU+e,U~ + ex)) + a(v,U~e) 0

forallv CHI t t>0
0

We select a finite dimensional approximation E C SN of e consisting of
E

piecewise hierarchic quadratic functions, i.e.,

N
L(2.8a) E(x,t) -)Ei(t)'Vi(x,1I(t,N))

where

U t1xj(t) xi-i(t)JL x

(2.8b) Y1 (x,U1(t,N)) - i....(t) < x < x1 (t)

p 0 ,otherwise

We also select a finite dimensional approximation V C SN of v consisting of
0

piecewise quadratics. Thus, we solve

(2.9a) (V,Ut + Et) + (V,f(.,t,U+E,Ux + Ex)) + a(V,U+E) 0

for alV C S~ t> 0
0

subject to the initial conditions

(2.9b) (V,E) -(V,uO-U) *for all V C~ S^ t -0
0



Once again, if the mesh positions and velocities were known, we would have

a set of ordinary differential equations for Ei(t). Note that our error

estimate E(xt) assumes the superconvergence of the piecewise linear finite

element solution U(x,t), i.e., we assume that the piecewise linear solution

is converging to higher order at the nodal points xi(t), i - 0, 1, ... , N.

The error estimate that is calculated by solving (2.9) is used to

control the motion of the mesh. Specifically, we determine the mesh positions

by solving the ordinary differential system

(2.10a) xit - (t) - -X(I EiY~iI - 1) i 1, 2, N,

where X is a positive constant and

-2 2 1 2 2
(2.10b) NE 11 E 1 1 fo[CE) + (Ex) Jdx

Thus, IIEiYiIji is the local error in H1 on (xi-l(t), xi(t)) and Eis

the average error in H1. If IIEi%111i is larger than Y then the right hand

hand side of (2.10a) is negative and the points xi(t) and xi-l(t) are

moved closer together. Similarly, when IIEiYit11 is smaller than K the points

xi(t) and xi-l(t) are moved apart. The differential system (2.10) was

studied by Coyle et al. [5) and shown to asymptotically equidistribute the

quantity }iEiTiIji and to be stable relative to small perturbations in the

mesh positions. Large values of the parameter X give shorter relaxation

times of xi(t), i 0 0, 1, ... , N, to an equidistributing mesh; however,

they introduce stiffness into the system (2.10). This strategy is similar to . -

one suggested by Hyman and Naughton 110] and we, like they, solve it by

eliminating E using (2.10) on two neighboring intervals. This gives

*=" °****-** - o o • , . , .. .. ° . .-. .. .. . .. . . . . . . . . . . . . . . . . . .-. •. . . * . . . .. 
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(2.11) ;1+1 2;1 + ;j-_1" -X(fIEi+1 i+1I 1 - IIE1Yii )
1 1, 2, .. ,N-1 ,t >0 ""-

We select an initial mesh for (2.11) that is either uniform or that

equidistributes E(xO). An algorithm for calculating an equidistributing mesh

is described in, e.g., Coyle et al. (51.

At present, we solve the three sets of ordinary differential equations

(2.2), (2.9), and (2.11), respectively, for the piecewise linear

approximation, the quadratic error estimate, and the mesh positions

simulataneously using the backward difference code DDASSL developed by Petzold

[151. This code is capable of solving systems of implicit differential and

algebraic equations having the general form

(2.12) g(t, y(t), ;(t)) 0 , t > 0

and subject to appropriate initial conditions. It can solve stiff systems,

with variable order of accuracy and temporal step size, and can even solve

problems when the matrix M in (1.1) is singular. Our differential system is

simpler than (2.12) and has the general form

(2.13) A(t,y)y + h(t,y) - 0 , t > 0

Furthermore, the matrix A and the Jacobian of h are sparse and banded and

DDASSL is capable of exploiting this structure. At present, we use finite

difference formulae to approximate Jacobians of g with respect to y and y.

3. Mesh Ref itement Algorithm

A top level algorithm for solving the system (2.2), (2.9), and (2.11) is

presented in Figure 1 in a pseudo-PASCAL language. The input parameters are a

,**...*.*.- .* .* * . ... ~ .* ** ~ * *** ** * ** * . .. .

. . . . . . . . . . . . . . . . . . . . .. . *".%.. "..
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set of output times toutput[k], k - 0, 1, ... , K, a spatial error tolerance

tol, and a value for X.

PROCEDURE mferef(toutput, K, tol, X);
BEGIN

select initial mesh;
k :- 1;
WHILE k < K DO

BEGIN
solve the problem on toutput[k-1] to touput[k] using

the moving finite element procedure described in
Section 2;

compute E;

IF E > tol
THEN add a mesh point to each subinterval
ELSE

BEGIN

IF E < tol/10 THEN delete a mesh point from
each subinterval;

k :=k + 1
END

END
END;

Figure 1. Top level Algorithm for the moving finite element
procedure with mesh refinement.

We halt the temporal integration at every output point and examine the

average error E. If E is larger than tol, we add a finite element uniformly

to each subinterval and re-do the integration. If E < tol/10 we delete every

other element and continue the integration. In the case when tol/10 E 4 tol

we continue the integration with the same number of elements. '-

Initial conditions are needed whenever elements have been added or

. deleted. When refinement is necessary, we calculate a refined solution Ur(x,t)

by interpolating U + E at time t using (2.4a) and (2.8a), i.e.,



9

N N "N
(3.1a) Ur(x,t) = , Ui(t)j(x,1(t,N)) + I Ej(t) Yj(x,ll(t,N))

i=O i=.

If one nodal point is added to each subinterval, then we need values of

Ur(xi ,t), i - 0 1, ..., N and Ur((Xi + xi+l)/2,t), i - 0, 1, ..., N-1.

We also need a refined error estimate Er(x,t) and we calculate this as

N N
(3.1b) Er(x,t) = . Ei(t) Ti(x,I(t,N))- [ Ei(t)0 2il(x,f(t,2N))i=1 i=1

Again, if one nodal point is added to each subinterval, then we need values of

Er((xi+xi+l)/4 ,t) and Er( 3(xi+xi+l)/4 ,t), i - 1, 2, ..., N.

When mesh points are deleted, we need values of E on the coarser mesh.

If every other mesh point is deleted then we use

(3.2) E(x21-l,t) U(x21-l,t) - [U(x 2 i,t) + U(x2i-2,t)1/2,

1 1 , 2, .. , N-1. "

Initial values for Ui(0) and El(0) were obtained by interpolating the

exact initial function uO(x). The initial mesh 1(0, N) can be selected so as

to equidistribute E(x,0). Finally, we select a constant value of A in a

relatively ad hoc manner; however, we are studying ways of automatically

choosing this parameter.

Procedures for evaluating f(x,t,u,ux), M(xt), D(x,t,u), and the initial

and boundary conditions must also be provided. A temporal error tolerance and

other parameters that are required by the code DDASSL are set internally in a

relatively problem independent manner.

4. Examples

We used a code that is based on the algorithm of Section 3 to solve the

following three examples that illustrate the performance of the moving finite
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element method and the utility of the error estimation strategy. In order to

estimate convergence rates, we solved some of the examples without refinement

and on stationary meshes.

Example 1. We consider the simple linear heat conduction problem

(4.1) u t + UX UXX - f(xt) t > 0 0 4 x C 1.0

and select the source term f(x,t), the initial function uO(x), and Dirichlet

boundary conditions so that the exact solution of (4.1) is

(4.2) u(x,t) (1 -tanh[Cj(x-C2t-C3)1}/2

The solution (4.2) is a traveling wave and its steepness, speed, and -,.

* . phase can be determined by selecting Cl, C2 , and C3 , respectively.

We solved this problem on stationary and moving meshes with a fixed

number of elements. In each case we chose Cl - 10, C2 - 1, C3 - -0.15, and,

for the moving mesh, - 10. Our results for the exact error Ije(.,t)jl, and

the effectivity index

( 4 3 .E.• .l l/,e . t ~ j

at t = 0.5 are presented as functions of the number of elements N in Table 1.

- The mesh trajectories for N 20 are shown for 0 4 t 1.4 in Figure 2. An

examination of Table I shows that hellll O(1/N) for both fixed and moving

meshes, which is as expected [16]. The error of the moving mesh solution is

about half of the error of the fixed mesh solution when N < 40. Furthermore,

, the effectivity index e + I as N increases and this indicates that the

error estimate E converges to the true error in HI The mesh is concentrated

- .in the vicinity of the wave front and follows the wave with approximately the

correct speed.

" * - *° -" " * : -. -



We next solve this problem on a moving mesh with refinement. We select

an error tolerance of 0.1, 1 - 30, and show the solution U(x,t) and the mesh

trajectories in Figures 3 and 4, respectively. Elements are added as the pulse

enters the region 0 4 x 1 1 for small t and then they are deleted as the

pulse leaves the region when t is about 1.25.

Example 2. We consider the following problem for Burgers' equation:

u t + uu x - Uxx 0 , t > 0 0 x 1
(4.4)

u(x,O) uO(x) , u(O,t) = a(t) , u(1,t) - b(t) .

As a first example, we select u0, a, and b so that the exact solution of (4.4)

is the travleling wave

(4.5) u(x,t) 1 - 2 ic tanhJ(x-t)/e]

As in Example 1, we solved this problem on stationary and moving meshes

with a fixed number of elements. We chose e 0.01 and, for the moving mesh,

X - 10. Our results for the exact error Ilie(.,t)il1 , and the effectivity

index at t = 0.5 are presented as functions of the number of elements N in

Table 2. We see that ellI - 0(1/N) for both fixed and moving meshes and

that the error estimate converges to the true error. Here, as in Example 1, we

see that the effectivity index is converging at a faster rate for the uniform

* mesh than for the moving mesh.

As a second example for (4.4), we select

(4.6) uO (x) - lOx(x - )(x - 3/4) , a(t) - b(t) 0.

For small times and E, the exact solution is a pulse that moves in the

positive x direction while steepening. At about t = 1, a shock layer forms .

near x - I and after a time of 0(1/), the solution dissipates to zero.

.. . . . . . . .. . . . . . ... **

. . . . . . . . . . . . . . . .. . . . . . . . ... * '* .
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STATIONARY MESH MOVING MESH

N ielil 8 Ilell ______

10 0.4275 0.9634 0.2810 0.9232

20 0.2330 0.9941 0.1604 0.9874

40 0.1175 0.9985 0.0892 0.9978

TABLE 1. Exact error jell and effectively index e for Example 1.
Calculations well performed on stationary and moving meshes having
N elements.

STATIONARY MESH MOVING MESH

N Ileilh e Ileil e

10 0.2036 0.8027 0.1499 0.7321

20 0.09372 0.9724 0.0847 0.9144

40 0.04707 0.9950 0.0434 0.9854

TABLE 2. Exact error h1ell1 and effectively index 8 for Example 2
with the exact solution given by eq. (4.5). Calculations were
performed on stationary and moving meshes with N elements.
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We present the solution U(x,t) and the mesh trajectories for

computations performed with 20 moving elements, e - 0.01, and X - 10 in

*Figures 5 and 6, respectively. The mesh is concentrated in regions of high

* curvature and follows the moving wave front.

Example 3. We consider the reaction-diffusion model in one dimension

(cf. Kapila 1111)

Ut Ux - Due-6 /T

*(4.7a,b) t > 0 0 X 1

LUt -Txx + uL~u e-6/T

e
6

(4.7c) D R

*(4.7d,e) u(x,0) T(x,0) I

C4.7f,g) Ux (0,t) -Tx(O't) 0

(4.7h,i) u(1,t) -T(1,t) I

This model discribes a single one step reaction (A +B) of a gas in a

-region 0 < x < 1. The quantity u is the mass fraction of the reacting gas, T

*is the gas temperature, L is the Lewis number, a is the heat release,

- 6 is the activation energy, D is the Damkohler number, and R > 0.88 is the -

* reaction rate.

We first consider th*- case when L 1. Then T + au I + a and

*(4.7) redices to the simpler problem

(4.8a) Tt Txx + D(I.+a-T)e-d/T ,t > 0 < x < 1,

(4.8b,c) Tx(0,t) -0 ,T(1,t) 1 t > 0

*(4.8d) T(x,0) -1 ,0 4x -C 1
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For small times the temperature gradually increases from unity with a "hot

* spot" forming at x - 0. At a finite time, ignition occurs and the temperature

*at x 0 jumps rapidly from near unity to 1 + a. A sharp flame front then

forms and propagates towards x - I with speed proportional to ead6/2(1+a). In

real problems, a is about unity and 6 is large; thus, the flame front moves

*exponentially fast after ignition. The problem reaches a steady state once the

flame propagates to x -1

We solve (4.7c,8) for a =1, 6 -20, and R =5 using a moving

*mesh with 20 elements. Our results for the mesh trajectories when 1 10 and

200 are shown in Figures 7 and 8, respectively. The computed temperatures T b

vs. x are shown in Figure 9 for several times and 1 10 and 200. We also.-

computed solutions on a moving mesh with refinement using tol -0.1 and

1 300. The mesh trajectories and solution in this case are shown in Figures-

10 and 11, respectively.

We see that the ignition time and the computed solutions while the flame

*front is propagating from x - 0 to x - 1 are sensitive to the choice of A (cf.

Figures 9 and 11). This is due to the extremely fast rate of ignition and

* velocity of the front. All three solutions are in essential agreement before

- ignition and upon approaching steady state. This is a very difficult problem

and yet our methods are capable of finding a solution with relative ease. This

* is because the mesh is moving with approximately the speed of the front and

* the solution along the mesh trajectories is changing slowly.

As a final problem, we solve the coupled system (4.7) with L 0.9. As

*in the previous example, we take a -1, 6 -20, R~ 5 and solve the problem on

* a moving mesh with 20 elements. Our results for the mesh trajectories when

* A -10 and 150 are shown in Figures 12 and 13, respectively. The computed
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temperature and mass fraction are shown in Figure 14 for A 10 and in Figure 15

for A 150. Again we computed a solution with refinement using tol = 0.1 and A

= 500. The mesh trajectories and solution are shown in Figures 16 and 17,

respectively. Once again, the ignition time and computed solutions have

different phases while the flame front is moving. We show the estimated error

I E[ 11 as a function of time for solutions calculated with A 10, N = 20, A "

150, N = 20, and X = 500 with refinement in Figure 18. For N - 20, the estimated

error is about 50 percent smaller when A 150 than for 1 - 10. The estimated

error is less than the prescribed tolerance of 0.1 when refinement is used.

5. Discussion of Results

We have presented a moving finite element method where the mesh is moved

so as to equidistribute the spatial component of the discretization error in

H1. We also discuss a computationally simple and effective procedure for

estimating the discretization error using quadratic hierarchic finite

elements. The error estimate gives users some confidence in the computed

solution and we also use it to develop a simple procedure for combining mesh

movement and refinement. Our approach makes use of existing software for

solving ordinary differential equations. We have used the differential

algebraic system solver DDASSL [151; however, there are several other

possibilities. We have applied a code based on our method to several examples

and have shown that it can effectively solve some very difficult partial

differential systems with little or no user intervention.

While our results are very encouraging, there are several aspects of our

work that are still incomplete. For some problems (e.g., Example 3) the

7i ,.
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- computed solutions seem to be sensitive to the choice of the parameter I used

in the equidistribution scheme. So far, the choice of this parameter is left

to the user, and while it is our only problem dependent parameter, we hope to

be able to determine it adaptively in the future. Furthermore, our refinement

procedure is not optimal and needs further study. However, even though our

strategy was simple it was still effective in that computer times were often

much less for greater accuracy with refinement than for solutions computed

with a fixed number of elements.

We intend to extend our method in several directions, such as including

higher order finite element approximations and to higher spatial dimensional

problems. Two-and three-dimensional problems are quite difficult; however, we

note that some success was reported by Miller [14] with a different, but

related, moving finite element method.

-. .
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Figure 2. Mesh trajectories for Example 1 with A-10 and N=20.

L* 4 L n i
5X

Fiur 3.Slto5 ~ ~ )v.xa 00 .,03 .,1ad12

fo xml sn eieetwt o . n 0



La

Figure 4. Mesh Trajectories for Example I using Refinement
with tol -0.1 and A =30.

Figure S. Solution U(x,t) vs. x for t - 0.0, 0.3, 0.6, 1.0 and 1.4
for Example 2. Initial and boundary conditions are chosen
to satisfy Eq, (4.6), A -10, N -20 and C 0.01.
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Figure 6. Mesh trajectories for Example 2. Iq.(itial ih 1 and bondr 2od 0in
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Figure 10. Mesh trajectories for Example 3, Eq. (4.8), using efinement
with tol -0.1 and I. 30U.
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Figure 11. Temperature T(x,t) vs. z at t -0.0, 0.24, 0.25, 0.256, 0.258,

0.26, 0.27, 0.28, and 0.6 for Example 3, Eq. (4.8), using
Refinement with tol -0.1 and 1 300.
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Figure 12. Mesh trajectories for Example 3, Eq. (4.7), with
L -0.9, A~ 150 and N -20.



Figure 14. Temperature (triangles) and mass fraction (octagons) vs. x at
t - 0.0, 0.227, 0.229, 0.237, 0.245, and 0.260 for Example 3,
Eq. (4.7), with L - 0.9, X - 10 and N -20. -
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Figure 15. Temperature (triangles) and mass fraction (octagons) vs. x at
t - 0.0, 0.227, 0.229, 0.237, 0.245, and 0.260 for Example 3,
Eq. (4.7), with L - 0.9, X - 150 and N -20.
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Figure 16. Mesh trajectories for Example 3, Eq. (4.7), using

refinement with L -0.9, A 500 and tol -0.1.

4-

Figure 17. Temperature (triangles) and mass fraction (octagons) vs. x at

t - 0.0, 0.227, 0.229, 0.237, 0.245, and 0.260 Eq. (4.7),

using refinement with L -0.9, A - 500 and tol -0.1.
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Figure 18. Estimated error 1JEjJ1 vs. time for Example 3, eq. (4.7), with
with L'- 0.9, )1 - 10, N - 20 (1), 1 150, N - 20 (2), A~ 500-
with ref inem~ent using tol - 0.1 (3).
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